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A B S T R A C T   

In this study, we explored the integration of machine learning (ML) techniques with feeding behavior (FB) time 
series data to predict mortality events (animals culled or found dead) in floor-raised broilers. Our dataset 
included 2,667,617 daily observations for eight FB traits from 95,711 birds across 146 feeding trials. After data 
cleaning, the class distribution was 93.7 % healthy birds and 6.3 % withdrawn birds (culled or found dead), 
coded as 0 and 1 respectively. Mortality predictions were made one or three days before the observed events. 
Time series data for different FB traits were utilized to extract 22 time series features per trait, creating a 
structured feature dataset (days in the feeding trial + 128 time series features). We compared different ML al-
gorithms: gradient boosting machine (GBM), multilayer perceptron neural network (MLP), logistic regression 
(LR), random forest (RF), and support vector machine (SVM). Due to the imbalanced nature of the data, we 
evaluated two sampling strategies: a random under-sampling technique (RUS) and a combined strategy (RUS +
SMOTE). Models were assessed using 20-fold cross-validation and an independent test set. Statistical tests 
indicated consistent differences in most FB traits between control and withdrawn birds at least 7 days before the 
event. Features derived from traits like daily feed intake, number of visited feeders, visiting activity interval, and 
number of meals presented high predictive importance for mortality monitoring in broilers. In the cross- 
validation, classifiers achieved an average (standard deviation) of up to 0.87 (0.02) for the area under the 
ROC curve (AUC) and 0.55 (0.03) for the area under the precision-recall curve (AUPRC). This demonstrated a 
significant increase in classification performance compared to a no-skill classifier. However, performance 
dropped notably when extending the prediction window from one to three days in advance. The performance 
observed in the independent set was similar to that observed during cross-validation, indicating the robustness of 
our approach. The RUS + SMOTE strategy slightly outperformed RUS across all methods. GBM and SVM algo-
rithms performed best, with no significant differences between them. Additionally, comparable results could be 
obtained by utilizing a reduced set of features with high predictive importance in comparison with models 
trained on the full feature set. In summary, Our findings indicate that large-scale feeding behavior data collected 
from electronic feeders offer valuable insights for predicting illness-related mortality events in floor-raised 
broilers using machine learning methods. Further research is needed to investigate the feasibility and cost- 
effectiveness of such monitoring systems in commercial settings.   

1. Introduction 

In commercial broiler production, the removal of birds from housing 
pens due to mortality or other illness-related conditions poses a sub-
stantial challenge for large-scale systems. These occurrences can be 
attributed to various factors, including infectious diseases, leg- 

associated problems, and suboptimal management conditions. 
Addressing these issues is paramount, as they lead to significant eco-
nomic losses annually for the poultry industry (Sullivan, 1994; Spack-
man et al., 2016; Astill et al., 2018). 

Preventing losses due to health-related issues requires the adoption 
of optimized management strategies, which in turn involves the constant 
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monitoring of the flock’s health status for improving disease outbreak 
detection. Observational data collected from measurement routines and 
designed experiments provide an important source to understand better 
the factors underlying broiler chickens’ mortality (Fossum et al., 2009; 
Schwean-Lardner et al., 2013; Zhang et al., 2018). Nonetheless, 
continuous manual observation of the birds’ health by trained personnel 
becomes unfeasible due to logistical and welfare reasons, as it is both 
time-consuming and labor-intensive and may cause unnecessary stress 
to the animals. 

The increasing availability of different sensor technologies in live-
stock farming offers opportunities to build systems for automated and 
non-invasive surveillance of animal performance, welfare, and health 
status (Astill et al., 2018; Brito et al., 2020; Ventura et al., 2020; Pérez- 
Enciso and Steibel, 2021; Rosa, 2021). For instance, in poultry species, 
audio sensors have been used for the automated detection of respiratory 
diseases (Carpentier et al., 2019; Cuan et al., 2022). Similarly, data 
generated by wearable sensors may help monitor the general health 
status of broiler chickens and other poultry species (Sassi et al., 2016). 
Additionally, the use of digital image processing has been increasingly 
suggested as an alternative for health monitoring in the poultry industry 
(Aydin et al., 2010; Zhuang et al., 2018; Zhuang and Zhang, 2019; Liu 
et al., 2021). Nevertheless, since commercial poultry species are densely 
housed in the same pen, large-scale applications of computer vision 
systems for image segmentation, bird individual identification, and 
posterior health monitoring are challenging (Zhuang et al., 2018). 

The onset of diseases in animals is generally followed by typical 
behavioral changes in feeding, social interaction, and general activity, a 
suite of signals commonly termed sickness behavior (Millman, 2007). 
Hence, tracking subtle alterations in individual behavior and activity 
patterns may provide useful information to classify the animal health 
status and for early detection of diseases, although such a task would 
require means to automate the collection of individual behavioral 
responses. 

Electronic feeders equipped with radio-frequency identification 
systems are becoming a feasible solution for measuring feed intake and 
other feeding behavior traits continuously in a large number of group- 
housed animals (Howie et al., 2011; Mendes et al., 2011; Lu et al., 
2017). The adoption of such technology becomes particularly important 
in the poultry breeding industry as it dismisses the use of cage-based 
trials for measuring individual feed intake (Alves et al., 2024; Bley 
and Bessei, 2008; Howie et al., 2011; Yan et al., 2019). Beyond 
providing useful information on feed efficiency for breeding purposes, 
the use of electronic feeders unveils opportunities to track patterns in 
social and feeding behaviors, potentially in near real-time, which may 
contribute to enhancing farm-level management decisions (Pérez-Enciso 
and Steibel, 2021). 

Different studies have pointed out feeding behavior traits collected in 
electronic feeding stations as potential health indicators in cattle. Such 
studies have shown that the onset of different illnesses such as bovine 
respiratory disease, ketosis, lameness, and other health disorders is 
accompanied by early changes in feed intake, intake per meal, number 
of visits, feeding time, and feeding rate (Gonzalez et al., 2008; Wolfger 
et al., 2015; Sutherland et al., 2017; Duthie et al., 2021). Conversely, 
limited research has been done to investigate the role of visit-based 
feeding behavior traits as health status indicators in the poultry 
industry. 

Due to the amount of data potentially generated daily by large 
poultry flocks monitored with electronic feeders, and the complexity of 
such information at the individual level, the use of robust analytical 
tools such as machine learning (ML) methods might contribute to the 
process of pattern learning. Hence, this study aims to explore strategies 
to integrate ML methods and feeding behavior patterns measured 
through electronic feeders for automated and non-invasive prediction of 
illness-related mortality events in floor-raised birds. 

2. Material and methods 

2.1. Animals, housing, and data editing 

The data used in this study were recorded from 95,711 pure-line 
broiler chickens of both sexes during 146 consecutive feeding trials of 
28-day length, occurring between the years 2017 and 2022. The birds 
were housed in experimental pens equipped with an electronic feeding 
system developed by the Cobb Vantress, Inc. (Siloam Springs, AR) en-
gineering team. The facilities were located in Oklahoma, each feeding 
trial consisted of up to three individual pens (typically of 56 ft length ×
13 ft width) per house coupled with at least 6 feeding units containing 
either 8 or 16 stations (electronic feeders) of 1 ft2 each and water lines 
equipped with nipple drinkers. The pens were housed with an average 
density of 1.5 birds/ft2. All management procedures were performed 
according to the standard recommendations described in the Cobb 
Broiler management guide (Cobb-Vantress Inc., 2021). 

Feeding behavior was continuously monitored during visits to the 
feeder using a passive radio-frequency identification (RFID) system. 
These electronic feeders were equipped with antennas that received the 
signal of individual low-frequency transponders attached to the birds’ 
wings (Fig. 1). The entrance of the feeder was narrowed to allow indi-
vidual access to the birds. For each access, the feeders recorded the in-
dividual codes of the animal, house, pen, and feeding station, as well as 
the visit date, time of entrance into and exit from the feeding station, 
total time spent at the feeder (seconds), and amount of food consumed 
(g). The visit data were automatically transferred and stored on a local 
server. Fig. 1 shows a schematic representation of the raw data acqui-
sition process. 

In total, 99,472,151 visit logs were obtained throughout the feeding 
trials, these visit logs were summarized in 2,667,617 daily observations 
for different feeding behavior traits. The following FB traits were 
considered as potential health status indicators: daily feed intake (DFI, 
g/day), daily number of visits (NVIS, n/day), time spent at the feeders 
(TSF, h/day), number of visited feeders (NVF, n/day), visiting activity 
interval (VAI, h/day), feeding rate (FR, g/hour), daily number of meals 
(NMEAL, n/day), average intake per meal (INTMEAL, g/meal), and 
meal length (MLEN, min). DFI was computed as the sum of all intakes 
recorded per visit during a day for an animal. For the NVIS, all indi-
vidual visits were counted, regardless of the intake amount. TSF was 
computed as the total time the animal spent in the feeders during the 
day. The NVF considered only the number of unique feeders visited 
during a day by the same bird (i.e., multiple visits to the same feeder 
accounted for one single observation or count). The VAI considered the 
interval between the first and last visits of a bird during the day, whereas 
FR was calculated as the ratio between DFI and TSF. The NMEAL was 
computed by clustering visits occurring within a defined meal criterion 
interval as part of the same meal (Howie et al., 2009). INTMEAL was 
considered as the total feed intake within each meal, averaged over all 
meals during the day. Lastly, MLEN was computed as the difference in 
minutes between the last and first visit within the same meal, averaged 
over all meals within a day. 

The identification of animals that did not complete the feeding tests 
was annotated by farm personnel and categorized as illness-related 
mortality events, totaling 8.76 % of all observations in the raw data. 
The main causes of removing events are birds found dead and welfare 
culling (V. Breen, Cobb-Vantress, Inc., Siloam Springs, AR, personal 
communication). 

Since the main interest was in the patterns extracted from the time 
series of the FB traits, only animals that stayed more than 6 days in the 
feeding trial were maintained in the dataset. Additionally, animals with 
missing records for any day were removed from the data. After data 
editing, the overall class distribution was 6.3 % for withdrawn birds (e. 
g., culled or found dead) and 93.7 % for healthy birds (completed 
feeding trial). Birds that finished the feeding trial were coded as 
0 whereas those withdrawn were coded as 1. 
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2.2. Time-series feature extraction 

All FB traits were considered as repeated measures over the feeding 
trial period, generating a time series for each animal and trait analyzed. 
As a starting point, the main interest in this work was to assess if feeding 
behavior could be used to predict mortality events one day in advance of 
their occurrence. For this purpose, the healthy birds were randomly 
assigned to control groups, with each control group being associated 
with a specific day on which mortality events occurred. For example, the 
control group for the mortality events that occurred on the ninth day of 
the feeding trial consisted of randomly chosen healthy birds whose 
feeding behavior was considered only up to their eighth day. In this way, 
both groups of healthy (control group) and withdrawn birds had time 
series of similar length. We also repeated the process described above 
considering a three-day prediction window. The R package tsfeatures 
(Hyndman et al., 2022) and other general-use R functions (R Core Team, 
2022) were used for extracting different features from the individual 
time series (TS). A set of 22 features was generated per trait, totaling 198 
features per animal. Additionally, the time series length (day_ID) for 
each animal was added as a numeric covariable (ranging from 6 to 27) in 
all classification methods. 

Shortly, the following time series features were extracted: f.mean 
(the time-series global average); f.sd (the time-series global standard 
deviation); f.range (the overall time-series range); mean_diff (the dif-
ference between the averages of the first and second halves of the time 
series); linearity and curvature (linear and quadratic coefficients of the 
time series orthogonal quadratic regression); entropy (the time series 
spectral entropy); trev_num (the numerator of a normalized nonlinear 
autocorrelation function); nonlinearity (a coefficient based on a modi-
fication of the Terasvirta’s nonlinearity test; Terasvirta et al., 1993; 
Hyndman et al., 2022); ncross (measures how often a time series cross 
its median line); npeak (the number of peaks of a time series); flat_spots 
(computed by dividing the sample space of a time series into equal-sized 
intervals, and computing the number of datapoints for which the time- 
series maintains the values at the same level); motiftwo (returns an 
entropy of words in the binary alphabet built for the time series); 
embed_incircle (the proportion of points inside a given circular bound-
ary space); trend (the strength of a time series trend); spike (computed 
as the variance of leave-one-out variances in the time series); std1st_der 
(the standard deviation of the time series first-derivative); acf1, acf2, 
and acf3 (the first, second and third autocorrelation coefficients of the 
time series); nacf (the index for the first negative autocorrelation coef-
ficient in the time series); e_acf1 (the first autocorrelation coefficient of 
the time series decomposition residual). 

It must be highlighted that the same time-series feature was extrac-
ted according to the different feeding behavior traits studied. For 
instance, the feature acf1 (first autocorrelation coefficient) was extrac-
ted for all feeding behavior time series, generating nine different values 
(i.e., acf1_DFI, acf1_NVIS, acf1_TSF, acf1_NVF, acf1_VAI, acf1_FR, 
acf1_NMEAL, acf1_INTMEAL, acf1_MLEN). Table 1 shows the average 
values for the 22 time-series features extracted according to the feeding 
behavior traits studied. Providing a comprehensive theoretical founda-
tion for these computed time-series features is beyond the scope of this 
study, for more information, the interested reader is referred to Wang 
et al. (2006), Fulcher (2017), Kang et al. (2017), and references therein. 

2.3. Machine learning methods 

We compared the classification performance of five different Ma-
chine Learning (ML) methods: logistic regression (LR; Walker and 
Duncan, 1967), gradient boosting machine (GBM; Friedman, 2001), 
multilayer perceptron neural network (MLP; Haykin, 1998), random 
forest (RF; Breiman, 2001), and support vector machine (SVM; Vapnik, 
1995). All methods were fitted using the scikit-learn library (Pedregosa 
et al., 2011), available for Python 3 (Van Rossum and Drake, 2009). The 
hyperparameter fine-tuning process of all ML methods considered was 
performed using a custom genetic algorithm (GA) implementation (htt 
ps://github.com/alvesand/pyga) written in Python programming lan-
guage (Python Software Foundation, 2022). A brief description of each 
investigated method is provided below. 

In the LR method, the optimization problem can be written in matrix 
form as follows: 

argmin −
1
n
[ylnp(y|X) + (1nx1 − y)ln(1nx1 − p(y|X))]T1nx1 + α‖β‖2

2 (1)  

where n represents the number of training observations; p(y|X) = 1
1+e− (Xβ)

is an n x 1 vector of probability estimates for positive cases according to 
the logistic function, with X representing an n × m matrix of time series 
features, and β representing a m × 1 vector of linear regression co-
efficients; 1nx1 is a vector of ones of dimension n × 1; α‖β‖2

2 is the L2 
regularization norm, with α representing a user-defined constant that 
controls the penalty magnitude. 

For the MLP we used a single-hidden layer architecture trained with 
backpropagation and stochastic gradient descent algorithms. The gen-
eral classifier has the following form: 

p(y|X) = fo

{[
g(h)(XW(h)

+ B(h))
]
wo +bo

}
(2) 

Fig. 1. Schematic representation for the acquisition process of the raw visit data. During the feeder visit the transponder attached to the bird’s wing is activated by 
the antenna and transmits back the data which is decoded by the reader and sent to the local server. The processed information is stored in a cloud database. 
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in which W(h) is the hidden-layer weight matrix with dimension m × k 
(where m represents the number of time series features and k stands for 
the number of hidden neurons), B(h) is a n × k matrix of neuron biases, 
g(h) is the hidden-layer activation function, wo and bo are k × 1 vector of 
weights and biases in the output layer, fo is the logistic function that 
activates the raw outputs to lie between 0 and 1. The weight gradients in 
Equation (2) are updated by minimizing the cross-entropy loss function 
(having a similar form as described in Equation (1). We used our GA 
implementation to find the MLP hyperparameters with the best classi-
fication performance in the training set. The following intervals were 
assumed for the hyperparameters: learning rate ∈ [0.001, 0.1], k ∈ [16, 
264], α ∈ [0.0001, 0.1], batch size ∈ [16, 264], g(h) = {logistic, tanh, relu, 
identity}. 

The RF is an ensemble learning algorithm that fits several decision 
trees (DT) classifiers on different bootstrap subsets of the training 
dataset and combines all DT predictions to improve its overall classifi-
cation performance. This technique is termed bootstrap aggregating or 
bagging for short. In the RF, each DT node is built using a randomly 
selected subset of the feature space, which helps to decorrelate the tree 
ensemble. The RF algorithm grows every DT according to recursive bi-
nary splitting rules, by selecting the best feature and cut-off threshold for 
each node according to a given loss criterion until achieving homoge-
neous or near homogeneous classes in the terminal nodes. Each DT 
classifies unobserved data by attributing the classes with the greatest 
frequency in the terminal leaves. During the GA-based fine-tuning, the 
following intervals were assumed for the RF hyperparameters: n_esti-
mators ∈ [50, 500], max_features ∈ [5,36], min_samples_split ∈ [0.01, 
0.15], min_samples_leaf ∈ [0.01, 0.15], max_depth = {None, 2, 5, 10, 15, 
20, 25, 30}, and criterion = {gini, entropy}. A detailed description of these 
hyperparameters can be found in the scikit-learn online documentation 
(Scikit-learn Developers, 2007). 

Similar to RF, GBM also uses an ensemble of decision trees as weak 

learners to build a model with better predictive performance. None-
theless, instead of building the trees independently, GBM uses a boosting 
technique for sequentially growing the trees by improving the prediction 
or classification performance of previous trees (James et al., 2013). At 
each iteration, the GBM algorithm fits a DT iteratively using the re-
siduals of the previous model as the response. For binary classification 
problems, the objective is to minimize the log-loss function for updating 
the gradients. At every iteration, the predictions are updated by the 
following rule: 

f̂
t
(X) = f̂

t− 1
(X)+ λψ t(eb− 1; xt) (3)  

where t represents the current iteration (for t = 1, 2, … T), ψ t(eb− 1; xt) is 
the prediction based on the current base learner ψ t(.), eb− 1 is a vector of 
residuals from the previous learner, xt is a subset of the features input 
matrix, and λ ∈ (0,1) is some shrinkage factor. GBM’s final predictions 
are given by the weighted sum of the predictions of all base learners in 
the ensemble. The hyperparameters and intervals considered during the 
fine-tuning optimization were: learning_rate ∈ [0.001, 0.15], n_estimators 
∈ [50, 200], max_features ∈ [5,36], min_samples_split ∈ [0.01, 0.15], 
min_samples_leaf ∈ [0.01, 0.15], max_depth = {None, 2, 5, 10, 15, 20, 
25, 30}, and criterion = {friedman_mse, squared_error}. 

The SVM algorithm optimizes a constrained maximum margin 
problem by projecting the dataset features into a higher dimensional 
space, in which complex non-linear patterns present in the dataset might 
be linearly separable in the feature space mapping. In the dual formu-
lation, the SVM can be optimized by maximizing the following 
Lagrangian function: 

L̃(a) = −
1
2
∑

i

∑

j
aiajyiyjK

〈
xixj

〉
+
∑

i
ai (4)  

subject to 
∑

iaiyi = 0 and 0 ≤ ai ≤ C. In Eq. (4), ai and aj are Lagrange 

Table 1 
Average values for features extracted from time series of different feeding behavior traits (daily feed intake – DFI, number of visits − NVIS, time spent at the feeder – 
TSF, number of visited feeders – NVF, visiting activity interval – VAI, feeding rate – FR, number of meals – NMEAL, intake per meal – INTMEAL, and length of meal – 
MLEN) measured in group-housed broilers using electronic feeders.  

Time-series features1 Feeding Behavior Traits2  

DFI (g) NVIS (count) TSF (min) NVF (count) VAI (h) FR (g/h) NMEAL (count) INTMEAL (g) MLEN (min) 

f.mean  176.98 41.79  1.62 17.29  19.39  126.02 13.48  15.17  8.07 
f.sd  38.84 13.81  0.43 5.56  3.01  27.53 3.68  5.33  2.87 
f.range  145.11 47.59  1.56 19.17  11.22  97.59 12.87  18.54  10.25 
mean_diff  36.54 − 5.92  0.19 − 3.44  0.68  11.96 − 2.19  6.23  2.40 
linearity  95.98 − 15.03  0.49 − 8.59  2.21  31.85 − 5.25  16.37  6.17 
curvature  − 34.72 − 6.68  − 0.34 − 1.16  − 4.40  − 0.32 − 2.25  0.85  0.51 
entropy  0.067 0.061  0.046 0.041  0.22  0.049 0.014  0.066  0.062 
trev_num  0.014 0.009  0.015 0.005  0.049  0.0025 0.021  0.005  0.001 
nonlinearity  3.35 NA*  3.33 NA*  3.39  3.44 NA*  3.82  3.74 
ncross  5.19 5.05  5.96 5.65  7.78  5.35 5.36  4.23  4.97 
npeak  5.28 5.03  5.26 5.19  5.48  5.27 4.90  5.48  5.47 
flat_spots  2.53 2.68  2.31 2.38  3.66  2.40 2.44  2.77  2.66 
motiftwo  1.58 1.59  1.68 1.67  1.46  1.64 1.65  1.52  1.59 
embed_incircle  0.27 0.44  0.36 0.46  0.067  0.45 0.39  0.50  0.51 
trend  0.62 0.54  0.49 0.46  0.38  0.53 0.44  0.65  0.57 
spike  3.5e-05 6.1e-05  5.2e-05 7.1e-05  6.9e-05  5.7e-05 7.5e-05  4.8e-05  5.4e-05 
std1st_der  0.26 0.30  0.31 0.33  0.324  0.30 0.33  0.27  0.29 
acf1  0.32 0.36  0.26 0.28  0.004  0.34 0.28  0.46  0.38 
acf2  0.21 0.18  0.12 0.12  − 0.028  0.15 0.11  0.30  0.21 
acf3  0.12 0.073  0.033 0.038  − 0.0438  0.041 0.033  0.18  0.099 
nacf  5.84 5.07  4.55 4.72  2.77  4.87 4.74  6.25  5.43 
e_acf1  − 0.18 − 0.11  − 0.15 − 0.15  − 0.19  − 0.10 − 0.12  − 0.17  − 0.14  

1 f.mean, f.sd and f.range: the time-series average, standard deviation and range; mean_diff: the difference between the averages of the first and second halves of the 
time series; linearity and curvature: linear and quadratic coefficients of the orthogonal regression; entropy: the spectral entropy; trev_num: the numerator of a normalized 
nonlinear autocorrelation function; ncross: how often a time series cross its median line; npeak: the number of peaks; flat_spots: the maximum run length across equal- 
sized intervals; motiftwo: an entropy of words in the binary alphabet built for the time series; embed_incircle: the proportion of points inside a given circular boundary 
space; trend: the strength of a time series trend; spike: the variance of leave-one-out variances in the time series; std1st_der: the standard deviation of the time series first- 
derivative; acf1, acf2, and acf3: the first, second and third autocorrelation coefficients of the time series; nacf: the index for the first negative autocorrelation coefficient 
in the time series; e_acf1: the first autocorrelation coefficient of the time series decomposition residual; *information excluded due to lack of variability. 
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multipliers associated with the observations i and j, C is a positive reg-
ularization parameter and K

〈
xixj

〉
is the Kernel function that defines the 

inner product in the feature space. The SVM hyperparameters were 
optimized within the following intervals: C ∈ [0.1, 3], gamma ∈ [0.001, 
0.5], and kernel = {rbf, linear, poly, sigmoid}. 

2.4. Sampling techniques 

Since monitoring mortality events is an imbalanced classification 
problem, we assessed the impact of two data sampling techniques for 
balancing the label distributions during the training of the classification 
algorithms. These sampling approaches prevent the ML methods from 
putting too much weight on the majority class during the learning 
process, leading to misleading classifications in the validation and 
testing sets. The first sampling strategy investigated was the random 
under-sampling (RUS) method. For the RUS, we down-sampled the 
majority class by randomly selecting a subset of examples from it until 
achieving a nearly even class distribution in the training set (as reviewed 
by Ali et al., 2019). 

In the second sampling strategy, we used a combination of under- 
sampling and oversampling techniques. Specifically, we first used RUS 
to down-sample the majority class until achieving a near 0.7/0.3 ratio 
(70 % of healthy birds and 30 % of withdrawn birds) in the training set. 
This process was followed by a full oversampling of the minority class 
with the synthetic minority oversampling technique (SMOTE; Chawla 
et al., 2022) until achieving a 0.5/0.5 ratio. This strategy is hereinafter 
termed RUS + SMOTE. Please note that the sampling strategies dis-
cussed here are applied only to the data used for training the models, 
with the actual class distribution being preserved in the validation and 
testing sets. 

2.5. Validation strategies, feature selection, and comparison metrics 

The full dataset comprised information on birds from 32 consecutive 
generations (G1 to G32). Based on this information, we divided the data 
into training (animals from G1 to G30, N = 66,866) and testing sets 
(animals from G31 to G32, N = 7011). During hyperparameter fine- 
tuning, we further divided the training set into two groups. Approxi-
mately 67 % of the training data was used for fitting the methods 
considering different hyperparameter combinations, while the remain-
ing ~33 % of observations were used to monitor the methods’ classifi-
cation performance within the genetic algorithm (GA) implementation. 
The best hyperparameter configuration was defined according to the 
method and sampling strategy (Random Under Sampling − RUS or RUS 
combined with Synthetic Minority Over-sampling Technique −

SMOTE). 
After hyperparameter fine-tuning, we performed a 20-fold cross- 

validation (CV) scheme in the training set to check for the generaliza-
tion capability of the final tuned models and to allow fairer comparisons 
across them. Note that for every iteration in the 20-fold CV, the sampling 
process was repeated, generating a training set according to the fold and 
observations sampled with RUS and RUS + SMOTE techniques. 
Furthermore, for each iteration in the cross-validation process we stored 
the features’ predictive importance according to the regression co-
efficients of the Logistic Regression (LR) model and the impurity-based 
importance estimated with the tree-based approaches (Random Forest −
RF and Gradient Boosting Machine − GBM). The impurity-based 
importance is computed by minimizing a splitting criterion (Gini im-
purity in RF and loss function in GBM) that reflects how well observa-
tions are separated in the output space. This impurity reduction process 
is then averaged across all trees for each feature (Zhang and Ma, 2012). 

During the cross-validation, 20 variable importance (VIM) scores 
were generated per feature according to the three different models (LR, 
RF, and GBM). We then averaged the VIM scores to rank and select the 
top 20 % features with the highest predictive importance according to 

the sampling technique (RUS and RUS + SMOTE) and the feature se-
lection method (LR, RF, and GBM). This information was used to retrain 
all classification algorithms (LR, MLP, GBM, RF, SVM) according to six 
reduced training datasets generated by the combination of the sampling 
techniques and feature selection methods. Finally, all models trained 
with the full (all features) and reduced (top 20 % features) training sets 
were evaluated according to their classification performance in the in-
dependent testing set (animals from G31 to G32). The objectives of this 
procedure were twofold: a) to assess if the results found with the full 
variable set in the CV scheme would replicate well in an independent 
dataset that did not contribute to the model’s training and fine-tuning 
processes (i.e., check for possible model overfitting), and b) to avoid 
over-optimistic results due to the inclusion of privileged information for 
the models trained with the feature selection step. Fig. 2 summarizes in a 
flowchart all the main steps taken for data preparation and analysis and 
how they interact. 

The classifiers’ performance was assessed based on different metrics 
that take into account the incidence of the four possible prediction 
outcomes: true positives (TP), false positives (FP), true negatives (TN), 
and false negatives (FN). The metrics used for comparing the classifi-
cation methods were specificity = TN/(TN+FP), sensitivity =

TP/(TP+FN), precision = TP/(TP+FP), and F1 = 2×
precision×sensitivity
precision+sensitivity. We 

also compared the models based on the area under the Receiver Oper-
ating Characteristic (ROC) curve (AUC), and the area under the 
precision-recall curve (AUPRC). In this study, sensitivity is also referred 
to as recall or true positive rate (TPR) interchangeably. 

2.6. Statistical analysis 

For comparing the FB averages between the two groups (alive and 
withdrawn), we used a matched pair design using information from the 
training data set. For each withdrawn bird, we randomly selected a 
healthy bird and assigned it to a control group. Only the FB data until 
one day before the mortality event were retained for animals from the 
control group, according to their matched pairs in the withdrawn group. 
We analyzed this dataset using a multivariate linear model for testing 
the effect of health status for each FB trait on a particular day before the 
mortality events. The model included the effects of health status 
(healthy or withdrawn), sex, hatch, and contemporary groups (birds 
raised in the same house and pen, during a specific feeding trial). The p- 
values computed according to the day were used to identify the relative 
period that each trait became consistently divergent before the mortality 
event (i.e., the p-values were always smaller than 0.05 from that day on). 

T-statistics and their p-values were computed to test the overall effect 
of the sampling strategy in the classification metrics assessed by the 
cross-validation scheme, assuming the following model: 

mijkl = μ+MLi + STj + Foldk + eijkl,

where mijkl is the value observed for the metric (specificity, sensitivity, 
precision, F1, AUC, or AUPRC) considering the classifier i, sampling 
strategy j, validation fold k, and randomly resampled training subset l, 
MLi is the effect of the machine learning algorithm (GBM, LR, MLP, RF, 
and SVM), STj is the effect of the sampling technique (RUS or RUS +
SMOTE), Foldk is the effect of the kth validation fold (k = 1, 2, …, 20), 
and eijkl is the random residual term. Additionally, multiple pairwise t- 
tests were performed to compare the classification performance across 
methods within the sampling strategies. 

3. Results 

3.1. Preliminary analysis 

As an illustrative example, Fig. 3 shows the average trend of different 
feeding behavior (FB) traits according to the survival status on the 21st 
day of the feeding tests (control group 21). Visual inspection of the line 
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charts indicates that mortality occurrences on day 21 were associated to 
some extent with prior changes in FB (Fig. 3). At the population level, 
the p-values for the statistical tests suggested that the average for the FB 
traits became consistently divergent a few days relative to the mortality 
events; more specifically, 7 days for TSF (p-value ≤ 0.011), 8 days for 
MLEN (p-value ≤ 0.0078), 10 days for INTMEAL, NV, and FR (p-values ≤
0.0126, 0.009, and 0.0078, respectively), 15 days for VAI (p-value ≤
0.0055), and 17 days for DFI and NVF (p-values ≤ 0.0028 and 0.01). 
Therefore, statistical tests indicated consistent differences in most FB 
traits between healthy and withdrawn birds at least 7 days before the 
event. On average, the sick birds were observed to feed less, reduced 
their feeding rate, visited fewer feeders, presented less visiting activity, 
and had a smaller intake per meal as the mortality event approached 
(Fig. 3). Nonetheless, shaded colors in Fig. 3 show wide and overlapping 
variation for FB trends according to the group (healthy or withdrawn), 
suggesting that monitoring the mortality risk at the individual level 
based on FB is a challenging task. 

3.2. Cross-validation results 

Table 2 shows the classification performance (assessed in a 20-fold 
cross-validation scheme) of different ML algorithms for predicting one 
day in advance the illness-related mortality events in floor-raised 
broilers based on feeding behavior traits. The classification ability 
depended heavily on the classifier (GBM, LR, MLP, RF, and SVM) and the 
sampling strategy (RUS or RUS + SMOTE) adopted, with averages 
(standard deviation) ranging from 0.84 (0.10) to 0.95 (0.00) for speci-
ficity, from 0.64 (0.03) to 0.74 (0.03) for sensitivity, between 0.27 
(0.02) and 0.47 (0.02) for precision, and from 0.38 (0.10) to 0.54 (0.02) 
for F1 score (Table 2). 

The combination of under and oversampling strategies (RUS +
SMOTE) delivered slightly better performance than the RUS training 
strategy across the classification methods, considering the specificity (p- 
value = 0.001), precision (p-value = 1.8 × 10− 6), and F1 (p-value = 4.19 

× 10− 7), and slightly worse sensitivity (p-value = 0.0004). The GBM 
algorithm, combined with the RUS + SMOTE strategy, achieved the best 
overall performance, with the highest averages for specificity, precision, 
and F1 score, although this model/sampling strategy combination had 
the lowest sensitivity average (Table 2). As expected, a sensitivity- 
precision trade-off across methods was observed. In other words, 
model/sampling strategy combinations that improved precision typi-
cally presented lower sensitivity and vice versa. As suggested by the F1 
scores, the best balance between false positives and false negatives was 
achieved by the GBM, followed by the SVM algorithm, both trained 
under the RUS + SMOTE strategy (Table 2). 

We assessed the AUC and AUPRC metrics to investigate which 
model/training strategy aggregated the highest performance consid-
ering the trade-off between true and false positive rates and between 
precision and sensitivity (recall) at different threshold values used for 
assigning the predicted probability values as positive classes. Fig. 4 
depicts the boxplots for AUC and AUPRC values assessed in a 20-fold 
cross-validation according to the classification method and the sam-
pling strategy, considering the predictions one day in advance. 

The average (standard deviation) for the AUC values ranged between 
0.846 (0.02) and 0.871 (0.02), values considered far superior to the 
performance expected for a random classifier (0.50). Conversely, the 
AUPRC ranged from 0.495 (0.03) to 0.549 (0.03) according to the 
classifier/sampling strategy combination, while an AUPRC of around 
0.063 (6.3 % of positive outcomes) would be expected for a random 
estimator. When we increased the prediction window to three days 
before the observed events, there was observed a performance reduction 
for all classification models (Fig. 5). Still, the observed values for AUC 
were consistently higher than the performance expected for a random 
classifier, with averages (standard deviation) ranging between 0.77 
(0.03) and 0.80 (0.02). Similarly, the observed values for the AUPRC lay 
consistently above the 0.06 value expected for a random estimator 
(Fig. 5). 

Overall, visual inspection of the boxplots suggests no major 

Fig. 2. Schematic representation of the main data preparation and analysis steps performed to assess the performance of different machine learning models for 
monitoring mortality in broiler chickens based on time series features extracted for different feeding behavior traits measured with a radio-frequency identification 
system. MG stands for mating generation. RUS is the random under-sampling technique. RUS + SMOTE is a combination of the RUS and synthetic minority 
oversampling technique (SMOTE). 
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differences in the AUC and AUPRC values between the sampling tech-
niques within the same classification model (Figs. 4 and 5). Neverthe-
less, there was a small advantage of the RUS + SMOTE over the RUS 
strategy across models considering the AUPRC metric (p-value < 0.01) in 
both prediction intervals (1 or 3 days in advance). This advantage can be 
better observed for GBM, considering the three-day prediction window 
(Fig. 5). Regardless of the sampling technique employed, the classifi-
cation algorithms with the highest AUC values were the GBM and SVM, 
with no statistical evidence of performance differences observed 

between them (Figs. 4 and 5). The same pattern was observed for 
AUPRC, with these methods presenting very similar performance in both 
training strategies. In turn, the smallest AUC and AUPRC were achieved 
by the MLP, regardless of the sampling strategy (RUS or RUS + SMOTE) 
and prediction interval (1 or 3 days in advance). 

3.3. Performance on the testing data based on the full-feature set 

Fig. 6 shows the ROC and precision-recall (PR) curves along with the 

Fig. 3. Time series of different feeding behavior traits according to the permanence status on the 21st day of the feeding trial. The line charts show the average data 
from 20 days to 1 day relative to the event of interest. Shaded colors represent the observations’ standard deviation for each day during the feeding test interval. 
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respective areas under these curves (AUC and AUPRC) for the inde-
pendent data according to the classification method and training strat-
egy, considering the one-day prediction interval and all available 
features for training the classifiers. The ROC and PR curves highlight the 
overall good performance of the classification models compared to a no- 
skill classifier (red lines) at distinguishing between withdrawn and 
healthy animals. For instance, Fig. 6A suggests that the SVM could 
identify within one day in advance 75 % of all animals that were 
removed from the feeding tests (TPR) at the expense of classifying 

erroneously 12.5 % of healthy animals as positive cases (FPR). By setting 
different thresholds for the models, it would be possible to increase the 
TPR beyond 75 % at an approximately linear cost for the FPR (Fig. 6A 
and 6B). Conversely, this relatively high TPR (75 %) would produce low 
precision values of around 30 % at the best scenarios, which roughly 
implies that for every 3 animals classified as non-healthy, two would be 
false positives (Fig. 6C and 6D). Fortunately, PR curves (Fig. 6C and 6D) 
clearly show that it is possible to adjust the models’ threshold to achieve 
much higher precision at a cost of reducing (at a slower pace) the 
classification sensitivity (Recall). 

AUC values observed in the testing set ranged from 0.84 to 0.87, 
whereas the interval observed for AUPRC lay between 0.51 and 0.60 
(Fig. 6). Overall, these values are within the intervals spanned by the 
cross-validation scheme (Fig. 4). Nonetheless, unlike the CV-based re-
sults, the AUC differences observed across models in the testing set were 
much smaller, with the SVM achieving the best overall performance in 
both training strategies. Furthermore, SVM also aggregated the highest 
AUPRC regardless of the sampling strategy (0.60 and 0.59), followed by 
GBM (0.58) and RF (0.57), trained with RUS + SMOTE and RUS stra-
tegies, respectively (Fig. 6C and 6D). As observed in the 20-fold CV, the 
AUPRC values obtained in the independent data were far superior to that 
expected for a random classifier (0.08 for the independent dataset). In 
general, these results provide evidence for the absence of overfitting 
problems in all classifiers. 

3.4. Variable importance and feature selection 

Impurity-based variable importance (VI) computed with the GBM 
and RF, as well as the LR coefficients were used to rank the time series 
features based on their predictive contribution. The 15 top-ranked fea-
tures according to the method (GBM, RF, or LR) and sampling strategy 
(RUS or RUS + SMOTE) are presented in Fig. 7. Four specific DFI- 
derived features (linearity, mean_diff, f.mean, and curvature) had the 
highest VI in GBM and RF, irrespective of the sampling strategy used 
(Fig. 7A, 7B, 7C, and 7D). Additionally, other time series features played 
relatively higher or lower importance in the tree-based methods (GBM 
and RF) depending on the sampling strategy considered. This is the case 
for features derived for VAI (e.g., linearity, f.mean, nafc, embed_incircle, 
mean_difference), DFI (e.g., trev_num, ncross), INTMEAL (e.g., trev_num, 
ncross, and trend), and NMEAL (flat_spots). In both sampling strategies, 

Table 2 
Average (standard deviation) for classification metrics observed in a 20-cross 
validation scheme performed to assess the performance of different machine 
learning methods trained for predicting illness-related mortality events (death or 
welfare culling) in broiler chickens based on time series features extracted from 
feeding behavior trends measured with a real-time radio-frequency system. 
Predictions were performed one day in advance of the observed events.  

Algorithm1 Sampling2 Specificity Sensitivity Precision F1 

GBM RUS 0.879 
(0.01) 

0.745 
(0.03) 

0.288 
(0.02) 

0.415 
(0.02) 

RUS +
SMOTE 

0.952 
(0.00) 

0.643 
(0.03) 

0.469 
(0.02) 

0.542 
(0.02) 

LR RUS 0.871 
(0.01) 

0.727 
(0.03) 

0.270 
(0.02) 

0.393 
(0.02) 

RUS +
SMOTE 

0.876 
(0.01) 

0.728 
(0.03) 

0.277 
(0.02) 

0.401 
(0.02) 

MLP RUS 0.842 
(0.10) 

0.707 
(0.11) 

0.292 
(0.15) 

0.380 
(0.10) 

RUS +
SMOTE 

0.844 
(0.10) 

0.722 
(0.08) 

0.295 
(0.11) 

0.389 
(0.10) 

RF RUS 0.893 
(0.01) 

0.720 
(0.03) 

0.306 
(0.02) 

0.429 
(0.02) 

RUS +
SMOTE 

0.921 
(0.01) 

0.676 
(0.03) 

0.358 
(0.02) 

0.467 
(0.02) 

SVM RUS 0.929 
(0.01) 

0.688 
(0.04) 

0.389 
(0.02) 

0.496 
(0.03) 

RUS +
SMOTE 

0.932 
(0.00) 

0.691 
(0.04) 

0.399 
(0.03) 

0.505 
(0.02)  

1 GBM: Gradient Boosting Machine; MLP: Multilayer Perceptron; NB: Naïve 
Bayes Classifier; RF: Random Forest; SVM: Support Vector Machine. 

2 RUS: random under-sampling on the training set; RUS + SMOTE: the ma-
jority class is under-sampled randomly until the ratio (0.70:0.30) followed by a 
full oversampling of the minority class with the SMOTE (synthetic minority 
oversampling Technique). 

Fig. 4. Classification performance of different machine learning methods in predicting illness-related mortality events in broiler chickens one day in advance. The 
features for prediction were extracted from feeding behavior trends. The classification performance was assessed using the area under the ROC curve (AUC) and the 
area under the precision-recall curve (AUPRC) in a 20-fold cross-validation scheme. Two different resampling techniques were employed during algorithm training: 
random under-sampling (RUS) and a combination of RUS with the synthetic minority oversampling technique (SMOTE). P-values were obtained by conducting 
multiple pairwise t-tests across classification methods within the sampling strategies. 
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Fig. 5. Classification performance of different machine learning methods in predicting illness-related mortality events in broiler chickens three days in advance. The 
features for prediction were extracted from feeding behavior trends. The classification performance was assessed using the area under the ROC curve (AUC) and the 
area under the precision-recall curve (AUPRC) in a 20-fold cross-validation scheme. Two different resampling techniques were employed during algorithm training: 
random under-sampling (RUS) and a combination of RUS with the synthetic minority oversampling technique (SMOTE). P-values were obtained by conducting 
multiple pairwise t-tests across classification methods within the sampling strategies. 

Fig. 6. Performance evaluation of machine learning algorithms for one-day advance prediction of mortality events (animal found dead or welfare culling) in the 
testing set. The Area under the ROC (Receiver Operating Characteristic) curves (A and B) and Precision-Recall curves (C and D) are presented. These algorithms were 
trained with features extracted from feeding behavior trends measured in broilers. Subplots in the left column depict the performance of models trained with a 
random under-sampling (RUS) technique. Right column subplots reflect the results obtained for models trained using a combination of under-sampling (RUS) and 
oversampling (synthetic minority oversampling technique − SMOTE) strategies. Red lines represent the performance obtained for a random classification. 
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the LR assigned the heaviest weights to day_ID, NVF’s f.mean, and DFI’s 
f.sd, following this order (Fig. 7E and 7F). The LR also assigned high 
importance to linearity (for NMEAL, NVF, and DFI), flat_spots (for VAI 
and NV), npeak (for NVF, MLEN, INTMEAL, and DFI), ncross (for NVF, 
MLEN, DFI), among others. 

The average values for the impurity-based scores (GBM and RF) and 
regression coefficients (LR) were used to select the features with the top 
20 % highest predictive importance. The percentage of variables in 
common between feature sets selected with the GBM and RF methods 
was 84.61 % and 76.92 % for the RUS and RUS + SMOTE strategies, 
respectively. These percentages were very low when comparing the 
features selected with impurity-based scores (GBM or RF) and the lo-
gistic regression coefficients, ranging between 30.77 % and 33.33 % 
depending on the sampling technique. 

Fig. 8 shows the classification performance in terms of AUPRC ach-
ieved by all algorithms in the testing data according to the different 
feature sets (All variables, Top20%_GBM, Top20%_RF, and Top20%_LR) 
selected for the two sampling strategies in the two prediction intervals 
investigated (1 or 3 days before the mortality events). In general, the 
MLP and RF methods benefited the most from the feature selection 
performed with impurity-based scores (20 %_GBM and 20 %_RF), 
especially considering the predictions performed 1 day before the 
mortality events (Fig. 8A). Conversely, the feature selection based on the 
logistic regression coefficients considerably worsened the performance 
of all models compared with the full variable set (Fig. 8A and 8B). 

For the RUS strategy, the highest AUPRC values were achieved with 
the MLP × 20 %_RF (0.60) and GBM × All (0.44) combinations for 
predictions performed 1 and 3 days before the mortality events, 

Fig. 7. Top-ranked features used to classify illness-related mortality events in broiler chickens according to the trained model (Gradient Boosting Machine – A and B; 
Random Forest – C and D, and Logistic Regression – E and F) and sampling techniques (left and right columns). Subplots in the left column depict the variable 
importance (VI) scores and LR coefficients computed with models trained using a random under-sampling (RUS) technique. Right column subplots reflect the results 
obtained for models trained using a combination of under-sampling (RUS) and oversampling (synthetic minority oversampling technique − SMOTE) strategies. Error 
bars represent the standard deviation obtained for the impurity-based scores and LR coefficients across a 20-fold cross-validation. 
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respectively (Fig. 8). In turn, for the RUS + SMOTE strategy, the highest 
AUPRC values were obtained with both MLP × 20 %_GBM (0.60) and 
SVM × All (0.60) for the 1-day prediction interval (Fig. 8A), while the 
GBM × All (0.44) performed the best for predictions 3 days before the 
mortality events (Fig. 8B). Considering both AUC and AUPRC values, the 
SVM trained with all data and using the RUS + SMOTE sampling 
strategy yielded the best overall performance (AUC = 0.87, AUPRC =
0.60) for the one-day prediction interval. For three-day predictions, the 
GBM using all data combined with the RUS strategy performed best 
(AUC = 0.80, AUPRC = 0.44). Notably, similar performance could be 
achieved using only a subset of features, as indicated by the perfor-
mances achieved with the SVM × 20 %_GBM × RUS + SMOTE combi-
nation (AUC = 0.87 and AUPRC = 0.59). 

4. Discussion 

This study explored the use of electronic feeders equipped with 
radio-frequency identification systems as a means of non-invasively 
monitoring illness-related mortality events in poultry production sys-
tems. We hypothesized that subtle changes in FB patterns measured in 
floor-raised broilers could be associated with the individual health sta-
tus of these birds. For most of the FB traits studied, the statistical tests 
suggested a consistent divergence between the averages of the two 
groups (control and withdrawn birds) at least 7 days before the event of 
interest. Nonetheless, we noted a wide and overlapping variation among 
the target classes for the FB daily observations, which highlights the 
challenges of monitoring mortality risk at the individual level based on 
the feeding behavior observed for specific days. 

To overcome these challenges, we extracted different time series 
features from the FB trends aiming to capture patterns occurring 
throughout time intervals of the feeding trials. These TS features were 
used as input information in different ML methods to predict within one 
day in advance the risk of an animal being removed from the feeding test 
due to illness-related issues. Due to the imbalanced nature of this clas-
sification problem, we also investigate the impact of two sampling 

strategies used for training the classification algorithms, namely RUS 
and RUS + SMOTE. The tested classifiers achieved averages (standard 
deviation) of up to 0.87 (0.02) and 0.55 (0.03) for AUC and AUPRC in 
the 20-fold cross-validation scheme, which indicates a substantial in-
crease in the classification performance compared to a no-skill classifier. 
Furthermore, similar values were achieved in the independent set, 
highlighting the good generalization capability of our approach. Results 
suggested that the combination of under and oversampling strategies 
(RUS + SMOTE) delivered slightly better performance than the random 
under-sampling (RUS) strategy across the classification methods. 
Overall, the GBM and SVM algorithms achieved the best performance. 

Results presented in this study provide important insights into the 
feasibility of implementing automated data-driven systems for moni-
toring in near real-time the individual health status of floor-raised 
broilers. Our findings suggest that the high-throughput measurement 
of FB through electronic feeders could be a valuable tool in building such 
systems. We have shown that this information can be combined with 
efficient classification algorithms to monitor individual health status 
non-invasively in poultry systems. A significant increase in the number 
of individuals predicted to be at high risk of illness-related mortality 
events could signal management failures or the onset of contagious 
diseases in specific pens. This information could be used by farmers and 
veterinarians to implement targeted intervention strategies to prevent 
disease outbreaks across different pens. The information on the expected 
health status of birds the next day could also guide the suitability of 
performing stressful management interventions in that specific pen. 
Additionally, the automated and non-invasive surveillance of animal 
health could help to improve the general welfare at the individual level 
by reducing the number of potentially stressful situations generated by 
unnecessary interventions in the pens (Sassi et al., 2016; Winckler, 
2019). 

We have shown that there is a trade-off between precision and 
sensitivity when using FB to predict illness-related withdrawal events as 
methods that improved precision typically presented lower sensitivity 
and vice versa. These findings have important practical implications at 

Fig. 8. Barplots for the area under the precision-recall curve (AUPRC) achieved by machine learning algorithms according to the feature selection method (All, 
Top20%_GBM, Top20%_RF, and Top20%_LR) and sampling strategies (RUS and RUS + SMOTE) adopted to predict mortality in broiler chickens based on time-series 
features extracted from feeding behavior traits. Predictions were performed considering intervals of 1 day (A) or 3 days (B) before the mortality events. The per-
formance of models trained with the full variable set (All) is compared with models using feature subsets containing the top 20 % variables with the highest pre-
dictive importance, ranked according to different methods (GBM, RF, and LR). The sampling techniques considered were random under-sampling (RUS) and a 
combination of RUS and synthetic minority oversampling technique (RUS + SMOTE) strategies. 

A.A.C. Alves et al.                                                                                                                                                                                                                              



Computers and Electronics in Agriculture 224 (2024) 109124

12

the farm level. Precision refers to the proportion of TP among all positive 
predictions (i.e., TP + FP), while recall (also called sensitivity) refers to 
the proportion of TP among all actual positive cases (i.e., TP + FN) (Saito 
and Rehmsmeier, 2015). In the context of broiler production, the most 
important consideration may depend on the specific goals of the moni-
toring system. If the goal is to identify as many sick birds as possible, 
then a higher recall rate may be more important than precision. On the 
other hand, if the goal is to reduce false positives and minimize un-
necessary interventions, then higher precision may be preferred. 
Therefore, the threshold for a classifier to assign animals as positive 
cases must be adjusted accordingly. For instance, Fig. 6D suggests that it 
would be possible for the SVM to achieve a sensitivity of 0.67 with a 
precision of 0.5 in the independent set by increasing the model threshold 
over 0.5. In other words, this means that 67 % of all birds removed from 
the pens due to illness-related issues would be identified by the model, 
with one out of every two animals predicted as positive outcomes being 
indeed withdrawn from the feeding trial the next day due to illness- 
related issues. These results are encouraging given the low incidence 
of the target class, which challenges the development of prediction al-
gorithms with both high precision and sensitivity. 

Despite the promising results, this study also has some gaps that need 
to be addressed further in future research. While achieving good clas-
sification performance within one day in advance is important for 
monitoring purposes, increasing this interval window would be 
certainly advantageous for preventing disease outbreaks more effec-
tively. Our results revealed that the classification performance dropped 
considerably when the prediction window was increased to 3 days, 
although the models still performed better than a random classifier 
(Fig. 5). This trend is expected to replicate for even bigger prediction 
windows (e.g., for 5 or 7 days in advance) relative to the day of observed 
events. Additionally, because we only had available the information on 
which animals were withdrawn from the feeding test, our target class 
reflected a general outcome resulting from different illness-related is-
sues. It might be beneficial to develop models trained with more detailed 
labels to improve both the classification performance and management 
decisions to prevent specific diseases (Cuan et al., 2022). 

Preventing the spread of diseases and improving animal welfare in 
commercial poultry systems have been a relevant concern for the in-
dustry and consumers for years (Hofacre, 2002; Capua and Marangon, 
2006; Erian and Phillips, 2017; Hafez and Attia, 2020). Recent ad-
vancements in sensor technology and data processing techniques have 
made possible an unprecedented advance in large-scale identification 
and prevention of diseases as well as monitoring animal welfare (Brito 
et al., 2020). Therefore, implementing these high-throughput pheno-
typing technologies in commercial production systems holds immense 
potential to benefit the poultry industry (Li et al., 2020). Unsurprisingly, 
there has been an increasing effort from different research groups to 
integrate sensor data for disease surveillance and welfare monitoring in 
poultry species. Some examples include the use of sound data for the 
identification of respiratory diseases (Carpentier et al., 2019; Cuan et al., 
2022), tracking systems based on wearable sensors (Banerjee et al., 
2014; Shahbazi et al., 2023), and image processing for health and 
behavior monitoring (Zhuang et al., 2018; Zhuang and Zhang, 2019; Liu 
et al., 2021). Ideally, gathering as much information as possible from 
different data sources could benefit the development of IoT-based 
intelligent systems for early disease detection in poultry species (Singh 
et al., 2020; Ahmed et al., 2021). Here, we provided evidence that 
feeding behavior assessed through RFID systems comprises a useful 
piece of data for integrating such systems. To the best of our knowledge, 
this study comprises one of the first efforts toward this direction. 

Our results are in line with what has been found previously in cattle 
by different studies, which provided evidence that abnormal changes in 
feeding behavior are potentially associated with the onset of several 
diseases in this species (Gonzalez et al., 2008; Wolfger et al., 2015; 
Sutherland et al., 2017; Duthie et al., 2021). For instance, it has been 
shown that a decrease in the mean meal intake, mealtime, and frequency 

of meals was associated with increased hazard for bovine respiratory 
disease in mixed-breed steers up to 7 days before clinical symptoms were 
noticed by the feedlot staff (Wolfger et al., 2015). Similarly, calves 
presenting sub-clinical or clinical symptoms for respiratory diseases 
decreased their feeding time and had fewer feeder visits compared to the 
healthy group (Duthie et. al., 2021). The results of this study suggest that 
TS features derived from traits such as DFI, NVF, VAI, and NMEAL 
present high predictive importance for health monitoring in broilers. 
Furthermore, our results indicate that a similar performance could be 
achieved by considering only a subset of features based on these traits in 
comparison with models trained with the full feature set, this result may 
have important implications for the scalability of this monitoring sys-
tem. It is broadly documented that sickness behavior is characterized by 
lethargy, anorexia, and depression in animals and humans (Hart, 1988; 
Tizard, 2008). Hence, this evidence supports our findings that abnormal 
changes in traits related to feeding motivation, frequency of feeding 
bouts, and overall activity of the birds are associated with good health 
deprival. 

Despite the evidence of an association between disease onset and FB, 
only a few studies have assessed the predictive usefulness of this infor-
mation with formal validation schemes. Belaid et al. (2019) reported 
specificity and sensitivity values of 42 % and 92 % in the testing data for 
the early classification of sick bulls using a monitoring system that 
combined activity and FB information generated with accelerometer 
sensors and feed bunks equipped with antenna systems, respectively. 
The specificity value found by these authors is lower than the values 
found in our study. Nonetheless, Belaid et al. (2019) used a prediction 
window of 9 days before the clinical signals, which may have contrib-
uted to the high false positive rate (inversely proportional to the speci-
ficity) reported in their study. 

In summary, the findings of this study provide evidence that FB traits 
measured through RFID technology are useful for predicting mortality 
risk in floor-raised broilers. This information could be combined with 
state-of-the-art technologies (e.g., high-throughput genotyping) in the 
poultry industry to build automated data-driven systems for monitoring 
the individual health status of floor-raised broilers. While the presented 
results are encouraging, there is room for further improvement. Future 
research addressing the different challenges and limitations discussed in 
this paper is encouraged. 

5. Conclusion 

According to our findings, large-scale feeding behavior data 
measured with electronic feeders comprise valuable information to 
predict illness-related mortality events in floor-raised broilers using 
machine learning methods. Our results suggest that GBM and SVM al-
gorithms achieved the best overall performance for this task. Further 
research is needed to investigate the generalizability of the findings to 
other populations (e.g. other genetic lines) and to test the feasibility and 
cost-effectiveness of implementing such monitoring systems in com-
mercial settings. 
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