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ABSTRACT Genome-wide association mapping and
genomic predictions of phenotype of individuals in live-
stock are predominately based on the detection and es-
timation of additive genetic effects. Non-additive ge-
netic effects are largely ignored. Studies in animals,
plants, and humans to assess the impact of non-additive
genetic effects in genetic analyses have led to differ-
ing conclusions. In this paper, we examined the con-
sequences of including non-additive genetic effects in
genome-wide association mapping and genomic predic-
tion of total genetic values in a commercial population
of 5,658 broiler chickens genotyped for 45,176 single nu-
cleotide polymorphism (SNP) markers. We employed
mixed-model equations and restricted maximum likeli-
hood to analyze 7 feed related traits (TRT1 - TRT7).

Dominance variance accounted for a significant propor-
tion of the total genetic variance in all 7 traits, rang-
ing from 29.5% for TRT1 to 58.4% for TRT7. Using a
5-fold cross-validation schema, we found that in spite
of the large dominance component, including the esti-
mated dominance effects in the prediction of total ge-
netic values did not improve the accuracy of the predic-
tions for any of the phenotypes. We offer some possible
explanations for this counter-intuitive result including
the possible confounding of dominance deviations with
common environmental effects such as hatch, different
directional effects of SNP additive and dominance vari-
ations, and the gene-gene interactions’ failure to con-
tribute to the level of variance.
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INTRODUCTION
The total genetic variance of a trait can be par-
titioned into 3 different variance components — an

additive component, a dominance component, and an
epistatic component (Fisher, 1918). The additive com-
ponent measures the variance due to the additive effect
of genes on a trait. The dominance component mea-
sures the variance due to the interaction of alleles of
the same gene locus. The epistatic component measures
the variance due to genes interacting across loci. The
last 2 components are non-additive genetic variances.
However, traditionally it is challenging to obtain ac-
curate estimates for non-additive genetic variances us-
ing pedigree information, especially if family sizes are
small as in sheep and cattle in which populations con-
sist mainly of half-sib families, due to large sampling
errors (Falconer and Mackey, 1996; Lynch and Walsh,
1998; Hill et al., 2008). Even with large full-sib family
sizes as in pigs and poultry, the precision of estimation
for non-additive variances is still problematic as the
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resemblance between relatives has a high degree of
confounding with common environmental effects (Hill
et al., 2008). Today, with the advent of high-throughput
genotyping technologies and the availability of whole-
genome single nucleotide polymorphism (SNP) marker
data, it is feasible to calculate these non-additive vari-
ance components from marker information (Toro and
Varona, 2010; Wittenburg et al., 2011).

Since Meuwissen et al. (2001) pioneered the genome-
wide selection method using high-density SNP markers
in early phenotype prediction, there have been large ef-
forts in examining the impacts of parametric and non-
parametric methods on the performance of predicting
phenotypes that include non-additive effects. For ex-
ample, parametric approaches have been used to esti-
mate both additive and non-additive variances via SNP
marker information as opposed to pedigree information
(Su et al., 2012; Vitezica et al., 2013; Munoz et al., 2014;
Nishio and Satoh 2014; Bolormaa et al., 2015; Witten-
burg et al., 2015; Zhu et al., 2015; Aliloo et al., 2016).
Non-parametric and machine learning methods such as
reproducing kernel Hilbert spaces (RKHS) regression
(Gonzélez-Recio et al., 2008; Gianola et al., 2014), neu-
ral networks (Gianola et al., 2011), and radial basis
function (RBF) regression (Long et al., 2011), Ran-
dom Forests (RF), Bayesian LASSO (BLASSO), and
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Bayesian additive regression trees (BART) (Azvedo
et al., 2015; Waldmann 2016) have been evaluated for
their predictability of phenotypes. Findings from these
studies have been mixed. Munoz et al. (2014) found
that in trees, marker-based estimation of the covari-
ance structures led to more precise separation of the
additive and non-additive genetic variance components.
Vitezica et al. (2013), in their study of mice, showed
that the individual breeding values were more accu-
rately estimated with marker-based genomic relation-
ship information than pedigree-based estimation. Su
et al. (2012) demonstrated that in pigs, genomic pre-
diction was improved by implementing analyses that
include non-additive effects and marker-based calcu-
lation of the covariance matrices. However, Bolormaa
et al. (2015) found that for growth, carcass, and fer-
tility traits in beef cattle, there was very little im-
provement in prediction accuracy of phenotypic values
using best linear unbiased prediction (BLUP) values
by accounting for non-additive variation. Furthermore,
Zhu et al. (2015) conducted a genome-wide association
study (GWAS) involving 79 complex traits in humans.
They also found little benefit in accounting for domi-
nance variation in their association mapping analyses.
They concluded that the missing heritability problem
in humans is most likely not due to unexplained domi-
nance variation (Zhu et al., 2015). Recently, Aliloo et al.
(2016) found that including dominance effects in a ge-
nomic prediction model improved slightly the accuracy
for fat yield in Holstein cows, but not for fertility traits.

To date, other than the study by Gonzilez-Recio
et al. (2008) that applied non-parametric methods to
include non-additive dominance and epistatic effects
in the genomic prediction of mortality rates in broiler
chicken, there has been no other study undertaken
to evaluate the impact of including non-additive ge-
netic variation on the genomic prediction of pheno-
typic values in a poultry population. In this paper, we
aimed a) to characterize non-additive genetic variation
in genome-wide association mapping of 7 feed-related
traits; and b) to examine the consequence of including
non-additive genetic effects in prediction of total ge-
netic values for a commercial poultry population. More
specifically, our objective was to investigate whether
. there was merit in including non-additive genetic vari-
ation in a genomic prediction program of phenotypes.

MATERIALS AND METHODS

Animals, Phenotypes, and SNP Data

A total of 5,658 broiler chickens from 3 contempo-
rary groups of a selection line in Cobb-Vantress Inc.
were genotyped with a Cobb-Vantress custom-designed
chip containing 52,232 SNPs. They were the progeny
from 79 sires and 496 dams that formed 575 full-
sib families. The population consisted of 3,979 females
and 1,679 males with 7 feed-related phenotypic traits
measured at less than 7 wk of age. Summary statistics

Table 1. Summary of basic statistics for 7 feed-related traits
in the study population. N — number of animals; Mean — mean
value in a standard deviation unit, Min — minimum value in a
standard deviation unit, Max — maximum value in a standard
deviation unit. Heterozygosity levels were raw values without
standardization.

Female (N = 3979)

Male (N = 1679)

Trait Mean Min  Max Mean Min  Max
TRT1 10.93 794 13.90 10.33 7.26 13.44
TRT2 18.92 1545 2292 14.52 11.20 18.52
TRT3 17.67 13.68 21.28 15.22 1142 18.25
TRT4 8.80 3.75 11.92  9.00 4.65 12.04
TRT5 6.31 292 916 6.36 2.68  9.33
BRT6 11.79 9.21 17.14 11 8.6 15.80
TRT7 —0.0034 —-5.27 570 0.000567 -3.41 3.97
Heterozygosity — 0.34 0.25 0.38 0.36 0.31  0.40

for the 7 traits are given in Table 1. Due to commercial
confidentiality restrictions, the 7 traits were coded as
TRT1, TRT2, TRT3, TRT4, TRT5, TRT6, and TRT7,
respectively. The values of mean, minimum, and maxi-
mum of each trait in Table 1 are presented in standard
deviation units. All 7 traits are continuous traits that
follow a normal distribution.

For consistency and ease of implementing in an in-
dustry practice, a non-conventional method of coding
SNP genotypes was applied. Instead of treating the mi-
nor allele of each SNP as the first allele, we coded each
SNP genotype based on the alphabetical order of the 4
nucleotides of genome sequence (e.g., for an “AT” SNP,
“AA” was always coded as 0, “AT” as 1, and “TT” as
2).

Prior to any analyses, quality control of the SNP data
was carried out. A total of 7,056 SNPs with MAF < 0.05
or calling rate < 95% were removed. Our final marker
data contained genotypes from 45,176 SNPs.

Statistical Analysis

Genome-wide Association Study (GWAS)} with
Additive and Dominance Effects. Here, we departed
from typical genome-wide association mapping in which
only additive effects of SNP are included in the linear
mixed model. Instead, our model included both fixed
additive and dominance SNP effects. The strength of
a marker-trait association was assessed for each SNP
separately, using the same analysis procedure as pre-
sented in Bolormaa et al. (2015). A linear mixed model
was constructed that consisted of fixed and random ef-
fects. Our linear mixed model, given observed animal
phenotypes y(ux1), is as follows:

y =1, p+ Xb+wlio; + w2i6; + Za+e (1)

where g is the population mean, X,y is a design ma-
trix, be,x1) is a vector of fixed effect consisting of con-
temporary group and sex, wljp,1) and w2;(,,) are vec-
tors containing the additive and dominance genotype
codes at the i*® SNP, respectively, c; and 3; are the
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scalar regression coefficients for the additive and domi-
nance effects, respectively, Z, .y is an identity matrix,
a(nx1) is a vector of random animal additive (polygenic)
effects, and e, 1) is a vector of errors. It is assumed that
a and e follow a normal distribution with mean zero and
variance A (;xn) 0,2 and | V- 062, respectively. Here,
0.? and 0.2 are additive genetic and error variances
and A is the numerator relationship matrix based on
pedigree information. The linear mixed models were fit-
ted and variance components estimated using residual
maximum likelihood as implemented in the stand-alone
package Qxpak v5.02 (Pérez-Enciso and Misztal, 2011).

For each of the 45,176 SNPs, we conducted 3 sep-
arate GWAS as follows: (1) First, we fitted an addi-
tive model where the fixed dominance effect w2;0;was
dropped from the model; (2) second, we fitted a dom-
inance model where the fixed additive effect wl;o;was
dropped from the model; and (3) third, we fitted a joint
additive dominance model where both wl;a; and w2;0;
were retained in the model. For our analyses, we as-
sumed a threshold value of P < 10~* at which the asso-
ciation between a SNP and a trait was declared signif-
icant. For each model, the false discovery rate (FDR)
of SNP effects was calculated as in Bolormaa et al.
(2011). That is, FDR = P*(1-Q)/[Q"(1-P)], where P
is the significance threshold value (e.g., P = 107*) and
@ is the fraction of SNPs detected to the total number
of SNPs genotyped. The R function Chi.test() in R pro-
gram (version 3.1.2) was applied to test the imbalance
of the number of SNPs with positive effects versus the
number of SNPs with negative effects in each GWAS
model.

Joint Estimation of Additive and Dominance Vari-
ance. We also performed analyses to examine the ben-
efits of partitioning the genetic variance into its additive
and dominance components. We used the same linear
mixed model as described by Bolormaa et al. (2015).
Our linear mixed model is as follows:

y =lau+Xb+hf+Za+Zd+e (2)

where the term Xb is the same as the model for GWAS
(Eq. 1), h(,xq) is a vector containing the average het-
erozygosity across all SNPs for each animal, 3 is the
heterozygosity regression coefficient for the trait, the
term Za is as defined for the model for GWAS (Z is
an identity matrix), d,xyy is a vector of random dom-
inance effects, and e is a vector of random errors. The
distributions of the random effects a and e have been
defined above, except that here, a has variance matrix
02GRM where GRM is a genomic relationship matrix
with its values calculated from the SNP information.
For the random dominance effect d, we assume it fol-
lows a normal distribution with mean zero and vari-
ance matrix o2 DRM, where 03 is the dominance vari-
ance parameter and DRM is a dominance relationship
matrix with its values estimated from the SNP infor-
mation.

Several different marker-based approaches to calcu-
lating the elements of the covariance matrices GRM
and DRM have been developed (e.g., Vitezica et al.,
2013; Munoz et al., 2014; and Zhu et al., 2015). In this
paper, we adopted the approach of Bolormaa et al.
(2015). In brief, GRM and DRM are calculated as
GRM =T T"/mand DRM = H H'/m, where T (nxm)
and H,xy) are matrices containing the additive and
dominance contributions for the n animals and m SNP
loci with 7;; € T and H,; € H. For j* animal at it
SNP locus, the additive contribution Ty is calculated
as =2pi/v2pigi, (& — p)/V2pigi, and 2¢;//2piq; for
whén the marker genotype is AA, AB, and BB, respec-
tively. The dominance contribution Hj; is calculated as
—pi/q, —1, and —gq;/p;, for when the marker genotype is
AA, AB, and BB, respectively. Here, ¢; and p; are the
allele frequencies for alleles A and B, respectively, at
the i*" SNP locus. Variance component estimates were
obtained from Eq. 2 using the package Qxpak v5.02
(Pérez-Enciso and Misztal, 2011). The independence of
matrices GRM and DRM was examined using the cor-
relation of their off-diagonal elements.

The significance of the dominance variance was ex-
amined by comparing the difference between -2Log-
Likelihood values of additive genomic model (AM) and
additive and dominance genomic model (ADM) for
each trait to a x? distribution with one degree of free-
dom (Bolormaa et al., 2015).

Cross-validation for Determining Accuracy of
Prediction under Different Models. A 5-fold cross-
validation approach was applied to predict the total ge-
netic values for individual animals in a validation popu-
lation using the additive and dominance genetic values.
The genomic prediction accuracy was calculated as the
correlation between the predicted total genetic values
(additive in the presence of dominance variations) and
the corrected phenotypic values (Bolormaa et al., 2015).
The corrected phenotypic values were derived after ad-
justing the original phenotypes for all fixed effects (i.e.,
= phenotype — fixed effects).

For validation purposes, the study population was
divided into 5 parts of similar size using 2 different
methods. The first method (denoted as “Across-Family
Group”) was to initially apply the Cytoscape 3.0 pro-
gram (©2001-2013 Cytoscape Consortium) to visualize
the family relationships among 79 sires, 496 dams, and
5,658 progeny, then split the sires into 5 groups and
place all offspring of the same sire into their corre-
sponding sire group (see Fig. 1 for illustration). As a
result, no animals in a validation dataset would have
related full-sibs in the other 4 reference datasets. The
second method (denoted as “Random Group”) was to
randomly allocate the offspring of each sire to one of 5
groups. For both methods, one of 5 groups took turns
as the validation population and the other 4 as the ref-
erence population.

For comparison purposes, the prediction accuracies
were obtained for 3 genomic models, namely an addi-
tive model (AM, i.e., fitting only GRM in the model),




| genotypes and phenotypes.

lominance model (DM, fitting DRM only) and the
llitive and dominance model (ADM, fitting both
M and DRM), and 2 5-fold cross validation schemes
ross-Family Group and Random Group).

RESULTS

enome-wide Association Studies (GWAS)
itting Either Additive or Dominance or
bth Additive and Dominance Variations

Figure 2 shows the distribution of the number of sig-
ficant SNPs (P < 107%) identified on each chromo-
ne for each of 7 traits and 3 GWAS models (i.e., addi-
e, dominance, or both additive and dominance mod-
). Several chromosomes contained a large number of
\Ps associated with 2 or more traits. These included
# chromosome 4 for TRT4 and TRT5, chromosome 6
W TRT2, TRT3, TRAIT4, and TRT7, chromosome 12
i TRT1 and TRT3, chromosome 14 for TRAIT4 and
HT7, and chromosome Z for TRT1, TRT3, TRT6, and
L7, respectively.

lt is clear that the additive model (illustrated by the
pistfix “ A”), and the combined additive and domi-
lice models (see the postfix “_AD”) produced the
Wajority of significant SNPs. This indicates that the
ditive effects of these SNP markers were the major
dce contributing to the significant results.
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jpure 1. Cytoscape visualisation of groups used in the Across-Family cross-validation illustrating the large number of full-sib families in the
lation and a balanced separation of group animals. Red dots represent sires, blue dots refer to dams, and turquoise dots represent progeny

When only the dominance effect of a SNP was fitted
in the GWAS model (Fig. 2, illustrated by the postfix
“D"), 3 chromosomes with a large number of signifi-
cant dominance effects were identified: chromosome 6
for TRT2, TRT3, TRT4, and TRT7, chromosome 1 for
TRT5, and chromosome Z for TRT2 and TRT3.

When comparing the 3 models within traits, for the
majority of traits, including the dominance effects into
the GWAS model contributed little change in the signif-
icant SNP profiles of the additive model (e.g., TRT6_A
vs. TRT6_D vs. TRT6_AD).

Table 2 presents detailed information on the number
of significant SNPs (P < 107*) for each trait that be-
longs to unique groups (individual model or intersection
of 2 models or 3 models, i.e., the components of a Venn
diagram). A total of 1,327 unique markers contributed
to these significant results. A close examination of the
Hardy-Weinberg equilibrium test using Pearson’s chi-
square method found that the genotypic frequencies of
8,141 SNP (18%) did not follow the expected propor-
tions (P < 0.001). Among the 1,327 significant SNP,
318 (24%) failed the Hardy-Weinberg equilibrium test.
Of the 318 SNP, 95 (30%) were from the sex chromo-
some Z.

Table 3 shows the composition of direction of signifi-
cant SNP effects for individual traits. It is clear that
for all 7 traits more SNPs were detected under the
additive model (ADD) than under dominance (DOM)
or the combined additive and dominance model (AD).
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Figure 2. Heatmap visualisation of chromosome distribution of significant SNP (P < 0.0001) for each of the 7 traits (TRT1 — TRT7) and
models (only Additive: “_A”; only Dominance: “D”; additive and dominance: “_AD”).

Table 2. The number of significant SNPs (P < 107*) identified from GWAS for each trait in each model that
belong to various exclusive groups (i.e., the components of a Venn diagram). Add — additive model, Dom —
dominance model and AD — additive and dominance model.

Trait

Ounly Add  Ounly Do Only AD Add + Dom  Dom + AD  Add + AD  Add + Dom + AD Total®
'RT1 127 19 17 1 12 203 21 400
TRT2 80 16 6 0 2 61 44 216
TRT3 7 35 3 1 19 60 57 252
I'RT4 105 19 21 7 24 142 40 358
TRTS b= 8 14 5 0 66 9 180
TRTG 33 3 4 0 0 31 2 73
TRTT 65 7 17 1 33 145 0 268

A Across the 7 traits, the total number of unique SNPs identified to be significant was 1,327.

The false discovery rate (FDR) was smaller under the
ADD (ranged from 1.27 to 6.84%) than under the DOM
or AD. As expected, under the ADD, the number of
SNPs with positive effects and the number with neg-
ative effects were balanced (see Chi-squared P-value
in Table 3). Under the DOM, the percentage of FDR
ranged from 4.0 to 90.4%. Except for TRT1, TRTS,
and TRT6, the number of SNPs with negative effects
was significantly larger than the number with positive
effects for all other traits (x* P < 0.05). Under the
AD (Table 3), except for TRT5, the class of SNP with
different directional effects followed a skewed distribu-
tion (Chi-squared P < 0.05) for 6 other traits. Re-
gardless of the direction of additive effects, the num-
ber of SNPs with the negative dominance effects far
exceeded the number of SNPs with positive dominance
effects for TRT2, TRT3, TRT4, and TRT5. For TRT6
and TRT7, the opposite was true, i.e., the major-
ity of identified significant SNPs had positive domi-
nant effects (e.g., 73 and 66 for TRT6, 147 and 157
for TRTT).

Estimates of Dominance Variance

The REML estimates of genetic variances using addi-
tive and both additive and dominance models are shown

in Table 4. In comparison to the additive model, fitting
both additive and dominance genetic effects in the ge-
nomic model resulted in the reduction of the propor-
tion of genetic variance explained by the additive effect
in all traits (see Table 4 h,? values, narrow-sense heri-
tability) except TRT5. The decrease in this value was
substantial for TRT3 (from 0.31 to 0.087) and TRT4
(from 0.33 o 0.092). The total phenotypic variance ex-
plained by the dominance variance (Va/Vpapm) was
significant for all traits (Table 4, Vq/Vpapm > 0.10,
P < 0.01). Among all, TRT1 had the highest V4/Vpapu
value (0.135) and TRT7 had the lowest value (0.105).
The broad sense heritability (the proportion of phe-
notypic variance explained by the total genetic vari-
ance that consisted of additive and dominance vari-
ances, Vg/Vpapm) was much higher than the narrow
sense of heritability for TRT1, TRT2, TRT5, TRTS,
and TRT7, while for TRT3 and TRT4, the opposite
was true. In all traits, the proportion of genetic vari-
ance explained by dominance variance (calculated by
Va/Vg,) was high, ranging from 29.5% for TRT1 to
57% for TRT2.

We also observed that the level of population het-
erozygosity had a significant impact (P < 0.05) on
TRT1, TRT2, TRT3, TRT4, and TRT5 (see Ta-
ble 4 tye values), but not on TRT6 and TRT7. The
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Table 3. Composition of significant SNPs (P < 10~*) with additive or dominance effects or both additive and dominance
effects.
Additive model Dominance model
Trait Total No.  FDR (%) +ve —ve Nb  Chi-squared ~ Total No. FDR (%) +veNb —veNb  Chi-squared
Nb P-value P-value
TRT1 352 1.27 170 182 0.522 53 8.51 34 19 0.039
TRT2 192 2.34 91 101 0.470 62 7.28 9 53 0.000
TRT3 195 2.31 94 101 0.616 112 4.02 16 96 0.000
TRT4 294 1.53 157 137 0.243 90 5.01 24 66 0.000
TRT5 158 2.85 75 83 0.524 22 20.53 14 8 0.201
TRT6 66 6.84 30 36 0.460 5 90.35 1 4 0.180
TRT7 211 2.13 107 104 0.836 41 11.01 4 37 0.000
Additive and dominance model

Trait Total No.  FDR (%)  +ve Add —ve Add +ve Add —ve Add  Chi-squared

+ve Dom  —veDom  —veDom  +4ve Dom P-value
TRT1 253 1.78 45 81 82 43 0.0001
TRT2 115 3.92 5 59 45 6 0.0000
TRT3 139 3.24 7 64 62 6 0.0000
TRT4 227 1.98 54 72 67 34 0.0017
TRT5 89 5.07 26 23 27 13 0.1376
TRT6 37 12.20 12 2 4 19 0.0002
TRT7 195 2.31 58 36 33 68 0.0005

Total No. - Total number of SNPs with P < 1074 FDR - False discovery rate; +ve Nb — number of SNPs with positive effect; —ve Nb
— SNPs with negative effect; +ve Add +ve Dom — SNPs with positive additive and dominance effects; —ve Add —ve Dom — SNPs with
negative additive and dominance effects; +ve Add —ve Dom — SNPs with positive additive and negative dominance effects; —ve Add --ve
Dom — SNPs with negative additive and positive dominance effects; Chi-squared P-value — P-value from x? test.

Table 4. Proportion of genetic variance estimated from the additive genomic model (AM) and the additive
and dominance genomic model (ADM) for each trait.

AM ADM

Trait ha2 CHet ha2 Vd / VpADM Vg / VpADM Vd / Vg (%)
TRT1 0.35 (0.12) 1.88* 0.323 (0.11) 0.135 (0.040)** 0.458 29.5
TRT2 0.12 (0.018) 6.65%* 0.081 (0.009) 0.108 (0.028)** 0.189 57.3
TRT3 0.30 (0.10) 4,41 0.088 (0.011) 0.108 (0.027)*** 0.195 55.1
TRT4 0.33 (0.11) 3.24* 0.093 (0.011) 0.106 (0.027)* 0.199 53.3
TRTS 0.13 (0.021) 2.54* 0.282 (0.098) 0.133 (0.041)** 0.415 32.0
TRT6 0.19 (0.047) —-0.38 0.214 (0.065) 0.130 (0.042)** 0.344 37.8
TRT7 0.12 (0.018) 1.12 0.0749 (0.0084) 0.105 (0.027)* 0.180 58.4

h,? heritability of additive effect; Vpanm — total phenotypic variance from the additive and dominance model; Vg —

dominance variance; V, — genotypic variance; tye — t-value of heterozygosity effect.
*significantly different at P < 0.05.
*significantly different at P < 0.01.
*significantly different at P < 0.001.

traits on which heterozygosity had a significant impact
correspond to the traits for which the majority of SNPs
had the negative dominance effects, while in TRT6 and
TRTT (no significant impact of population heterozygos-
ity found) the majority of SNPs had positive dominance
effects (Table 4).

Accuracy of Prediction of Phenotypic
Values

Tables 5 and 6 summarize the genomic prediction ac-
curacy of phenotypic values (calculated as the correla-
tion between the predicted total genetic values and the
corrected phenotypic values) for each trait using 3 ge-
nomic prediction models (additive, dominance or both
additive and dominance) and 2 5-fold cross-validation
schemes. When the Across-Family group approach was
used, in comparison to the additive genomic model AM

(fitting GRM only), the average prediction accuracy for
each trait in the dominance model DM (fitting DRM
only) was close to zero (Table 5, the values ranged from
—0.002 (0.046) to 0.056 (0.029)). When using the Ran-
dom Group approach (Table 6), the average prediction
accuracy in the dominance model ranged from 0.072
(0.017) for TRT6 to 0.13 (0.029) for TRT1.

When comparing the genomic prediction accuracies
of phenotypic values from both additive and dominance
models (ADM) to those of AM, surprisingly, the over-
all prediction accuracy declined in all traits (Tables 5
and 6), although the magnitude of decrease was not
significant (P > 0.05). For example, for TRT1, the av-
erage accuracy under the AM was 0.394 (0.0146), while
under the ADM, the prediction accuracy was reduced
to 0.387 (0.0134) (Table 6). Therefore, including SNP
dominance effects in a genomic prediction model had a
slight negative effect on the prediction accuracy.
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Table 5. Accuracies of predicted phenotypic values for different models and the 5-fold cross-validation scheme

— Across family groups.

Group 2

Average SD

Model Trait Group 1 Group 3 Group 4 Group 5
Additive TRT1 0.297 0.351 0.269 0.250 0.313 0.296 0.0392
TRT2 0.199 0.193 0.122 0.176 0.195 0.177 0.0320
TRT3 0.181 0.229 0.202 0.226 0.154 0.198 0.0316
TRT4 0.183 0.252 0.269 0.276 0.202 0.236 0.0416
TRTSH 0.190 0.213 0.255 0.277 0.161 0.219 0.0472
TRT6 0.168 0.174 0.193 0.206 0.169 0.182 0.0168
TRT7 0.152 0.166 0.213 0.137 0.192 0.172 0.0306
Average 0.196 0.225 0.217 0.221 0.198 0.212 0.0135
Dominance TRT1 0.013 0.047 0.067 0.091 0.064 0.056 0.0289
TRT2 —0.004 0.030 —-0.011 0.045 0.028 0.018 0.0240
TRT3 —0.044 —0.009 0.014 0.054 0.008 0.004 0.0357
TRT4 —0.051 0.010 0.022 0.041 0.033 0.011 0.0366
TRTS —0.060 —0.027 0.020 0.037 0.044 0.003 0.0447
TRT6 —0.055 —-0.043 0.036 0.004 0.047 —0.002 0.0457
TRT7 —0.004 —0.006 0.019 0.014 0.033 0.011 0.0164
Average —0.030 0.000 0.024 0.041 0.037 0.014 0.0295
Add. + Dom. TRT1 0.275 0.337 0.280 0.270 0.297 0.292 0.0272
TRT2 0.150 0.185 0.095 0.182 0.151 0.152 0.0362
TRT3 0.119 0.192 0.187 0.232 0.116 0.169 0.0503
TRT4 0.105 0.217 0.238 0.261 0.143 0.193 0.0661
TRT5 0.106 0.169 0.216 0.246 0.126 0.173 0.0589
TRT6 0.125 0.146 0.187 0.178 0.165 0.160 0.0250
TRT7 0.103 0.117 0.177 0.109 0.146 0.130 0.0308
Average 0.140 0.195 0.197 0.211 0.163 0.181 0.0290

Table 6. Accuracies of predicted phenotypic values for different models and the 5-fold cross-validation scheme

— Random groups.

Model Trait Group 1 Group 2 Group 3 Group 4 Group 5 Average SD
Additive TRT1 0.382 0.402 0.400 0.376 0.411 0.394 0.0146
TRT2 0.264 0.288 0.267 0.238 0.361 0.284 0.0468
TRT3 0.275 0.298 0.291 0.290 0.353 0.301 0.0300
TRT4 0.290 0.331 0.336 0.363 0.369 0.338 0.0314
TRT5 0.264 0.274 0.291 0.337 0.354 0.304 0.0396
TRT6 0.265 0.238 0.252 0.275 0.296 0.265 0.0221
TRI7 0.279 0.267 0.276 0.263 0.276 0.272 0.0068
Average 0.288 0.300 0.302 0.306 0.346 0.308 0.0221
Dominance TRT1 0.133 0.102 0.173 0.125 0.104 0.127 0.0288
TRI2 0.085 0.073 0.130 0.112 0.084 0.097 0.0235
TRT3 0.094 0.106 0.127 0.151 0.059 0.107 0.0347
TRT4 0.087 0.128 0.131 0.161 0.053 0.112 0.0422
TRTS 0.068 0.157 0.120 0.133 0.067 0.109 0.0401
TRT6 0.042 0.075 0.075 0.078 0.087 0.072 0.0172
TRIT7 0.120 0.078 0.139 0.144 0.089 0.114 0.0295
Average 0.090 0.103 0.128 0.129 0.078 0.105 0.0227
Add. + Dom. TRT1 0.370 0.390 0.403 0.377 0.395 0.387 0.0134
TRT?2 0.243 0.261 0.265 0.238 0.354 0.272 0.0471
TRT3 0.262 0.290 0.292 0.297 0.332 0.294 0.0250
TRT4 0.262 0.323 0.324 0.349 0.343 0.320 0.0345
TRT5 0.226 0.290 0.236 0.312 0.328 0.288 0.0388
TRT6 0.236 0.233 0.248 0.263 0.279 0.252 0.0193
TRT7 0.257 0.237 0.269 0.264 0.273 0.260 0.0142
Average 0.265 0.239 0.298 0.300 0.329 0.296 0.0230
DISCUSSION question whether the differences from these studies were

A better understanding of the non-additive genetic
effects of a large number of SNPs on complex phe-
notypes can provide important knowledge on the im-
provement of genomic prediction of individual animals.
To date several studies have examined the impact of
non-additive SNP genetic variation on genomic pre-
diction accuracy of complex traits in different species.
However, the results were conflicting. This raised the

due to different population structures of these species,
ie., large full-sib families (e.g., pig and tree species)
vs. large half-sib families (e.g., cattle). In this study,
using data from large full-sib families of broilers (575
full-sib families consisting of 79 sires, 496 dams, and
5,658 progeny) and the same methods as Bolormaa
et al. (2015), we evaluated the SNP dominance effects
on 7 feed-related traits with different heritabilities (0.12
to 0.35). Our results clearly indicate that a significant
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amount of SNP dominance variance existed for all traits
and that this explained 10.5 to 13.5% of the pheno-
typic variance and 29.5 to 58.4% of the total genetic
variance, respectively. The magnitude of the dominance
variances identified in this study was much larger than
those of growth, carcass, and fertility traits in beef cat-
tle (Bolormaa et al., 2015). However, despite an ideal
large full-sib family structure and large dominance vari-
ations in all traits, including both additive and domi-
nance SNP effects in a genomic model for the prediction
of phenotypic values had little impact on improving the
prediction accuracy of an additive model. Our results
confirmed the findings of Bolormaa et al. (2015). The
theoretical explanations by Hill et al. (2008) may shed
some light for our findings: a) In cases of full-sib pop-
ulations, epistatic or dominance variance components
are confounded with the common environment shared
by full-sibs (in this study, it would be hatch effect); and
b) the gene-gene interactions fail to contribute to the
level of variance.

The intriguing results found in our study were that
including additive and dominance SNP effects in the
prediction model resulted in a slight decline of predic-
tion accuracy in all 7 traits. This was not seen in the
other studies (e.g., Su et al., 2012; Bolormaa et al.,
2015). This may be due to the fact that the genomic
prediction model, e.g., Su et al. (2012) used, included
not only additive and dominance effects of SNP mark-
ers, but also the additive x additive interactions. As a
result, their model produced a slightly higher accuracy
(29.5%) than a simple additive model (28.5%) (Su et al.,
2012). In our study, none of the models considered an
epistatic interaction. In addition, a close examination of
all SNPs identified with significant additive and dom-
inance effects on several traits in our study revealed
that the number of SNPs with negative dominance ef-
fects was far greater than the number with positive ef-
fects in 5 out of 7 traits. We also observed that the
total genetic values predicted from the model including
additive and dominance effects were smaller (ranging
from 2.7 to 44%) than the genetic values from the ad-
ditive effects only model. The results indicate that the
additive and dominance effects may have cancelled each
other out when both were included in the same genomic
prediction model.

In addition, we also found that when including addi-
tive and dominant effects into the REML analysis, the 5
traits (TRT1, TRT2, TRT3, TRT4, and TRT7) showed
reduced additive variances. The recent study in apples
(Kumar et al., 2015) also found that the genomic pre-
diction models excluding non-additive components pro-
duced upward bias in estimates of additive variance.

Unlike growth, carcass, and fertility traits in beef cat-
tle (Bolormaa et al., 2015), in which the direction of
the overall heterozygosity effect (reflected by the sign
of tyet value) for each trait largely agreed with the di-
rection of the majority of SNPs identified to have sig-
nificant dominance effects, in our study, we found that
the opposite was true. That is, the traits with an overall

significant positive effect of heterozygosity (e.g., TRT2,
TRT3, TRT4, and TRTS5 in Table 5, tie; ), except TRT1,
linked to a large number of SNPs with negative domi-
nance effects. This suggests that the underlying domi-
nance effects favored the opposite of directional selec-
tion on the trait of interest. Another possible expla-
nation is that the direction of SNP dominance effects
could be the consequence of the allele coding scheme
we applied to all SNP markers.

Two different 5-fold cross-validation schemes were
used in this study to compare the genomic predic-
tion accuracy. In the case of Across-Family groups,
in which no progeny of the reference population fam-
ilies was included in the validation population of the
other 4 groups, in theory the off-diagonal elements
of the additive GRM and those of DRM should be
orthogonal (i.e., zero correlation). However, we did
find a positive correlation between them (Fig. 3, r =
0.27, P < 2.2°107'%). The departure from the Hardy-
Weinberg equilibrium in 18% of 45,176 SNPs that were
used to build both GRM and DRM could be one of
the contributing factors for the un-orthogonal correla-
tion. In theory the orthogonality of additive and dom-
inance components happens only when there is no ge-
netic drift, no selection, and no mutation in a pop-
ulation, and all genotypic frequencies follow a link-
age equilibrium pattern (Falconer and Mackay, 1996).
When investigating the relationship between individ-
ual genome-wide heterozygosity and individual inbreed-
ing coefficients, we found a significant negative corre-
lation between the 2 parameters (Fig. 4, r = —0.2194,
P < 227107167,

In this study, the only method evaluated for esti-
mating the SNP dominance effects on different feed-
related traits was that of Bolormaa ét al. (2015). Us-
ing simulation data, Long et al. (2011) investigated the
non-parametric method — RBF regression for predicting
quantitative traits under different additive, dominance,
and epistasis gene effects. Their results suggest that
RBF had better predicting merit of individuals than the
Bayesian LASSO when non-additive gene effects exist,
but was the opposite under additive gene action (Long
et al.,, 2011). Azvedo et al. (2015) evaluated the per-
formance of 10 different additive-dominance predictive
models, including Ridge, Lasso, and Bayesian methods,
in predicting genomic breeding and total genotypic val-
ues from additive and dominance models. Using the
simulated datasets, they demonstrated that a modified
Bayesian/Lasso method performed the best in compar-
ison to other methods. This suggests that the different
methods may yield different outcomes. Recently, us-
ing both simulation data and real pig data, Waldmann
(2016) also found that in the presence of dominance
and epistasis, the non-parametric method — BART, de-
veloped by Chipman et al., 2010, gave a smaller ge-
nomic prediction error and increased prediction accu-
racy of phenotypic values than RF, BLASSO, GBLUP,
and RKHS regression methods. Therefore, further ex-
amination with different models needs to be conducted
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Figure 3. The relationship between off-diagonal elements of the additive genomic relationship (GRM) and dominance genomic relationship
(DRM). The correlation is 0.2722, which is significantly different from zero (P < 2.2e-16).
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Figure 4. Relationship between individual % heterozygosity and the inbreeding coefficient. The correlation is —0.2194, which is highly and

significantly different from zero (P < 2.2e-16).

to evaluate the effect of non-additive genetic variance
(including non-additive and dominance epistasis inter-
actions).

CONCLUSIONS

This study quantified the non-additive genetic vari-
ance - dominance in a commercial broiler chicken pop-
ulation for feed-related traits using a large number

of SNP markers and large full-sib families. The re-
sults demonstrate that 1): SNP dominance variance
accounted for a significant proportion of the total ge-
netic variance in all 7 traits; 2) including dominance
effects in a GWAS model contributed little in the
SNP profiles of an additive model; and 3) there is
little merit in including non-additive SNP genetic ef-
fects into a genomic prediction of phenotypic values
of animals.
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